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Abstract— Radio communication exhibits the highest energy
consumption in wireless sensor nodes. Given theiimited energy
supply from batteries or scavenging, these nodes miutrade data
communication for on-the-node computation. Currenty, they are
designed around off-the-shelf low-power microcontrtbers. But
by employing a more appropriate processing elementhe energy
consumption can be significantly reduced. This papedescribes
the design and implementation of the newly proposefblded-tree
architecture for on-the-node data processing in wiless sensor
networks, using parallel prefix operations and datalocality in
hardware. Measurements of the silicon implementan show
an improvement of 10-28& in terms of energy as compared to
traditional modern micro-controllers found in sensa nodes.
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l. INTRODUCTION

WIRELESS sensor network (WSN) applications rafige
medical monitoring to environmental sensimglustrial
inspection, and military surveillance. WSN noéeasentially
consist of sensors, a radio, and a microcontrotbenbined
with a limited power supply, e.g., battery or energ
scavenging. Since radio transmissions are \exgensive
in terms of energy, they must be kept tanmimum in
order to extend node lifetime. The ratio of comneation-to-
computation energy cost can range from 100 to 30PG0o
data communication must be traded for on-the-noodegssing
which in turn can convert the many sensemdings into
a few useful data values. The data-driven natdr&VeN
applications requires a specific data proogsspproach.
Previously, we have shown how parallel prefix cotafians
can be a common denominator of many WSN data psoues
algorithms [2]. The goal of this paper is to desam ultra-
low-energy WSN digital signal processor by furteeploiting
this and other characteristics unique to WSNSs.

First, Section Il lists these specific charactersbf WSN-
related on-the-node processing. Then, Sectiondllecs the
proposed approach to exploit these properties.i@edv
elaborates on the programming and usage of theltires
folded tree architecture. Section V discusses figi@tion-
specific integrated circuit (ASIC) implementatiofhtbe design
while Section VI measures its performance and Secdll

illustrates the usefulness to WSNs with four refgva
case-studies. Finally, the work is concluded in Sectidil.
Il. CHARACTERISTICS OFWSNS AND RELATED
REQUIREMENTS FORPROCESSING

Several specific characteristics, unique to WSN=sednto
be considered when designing a data processortestivie
for WSNs.

Data-Driven: WSN applications are all about sensing data

in an environment and translating this into uséffdrmation
for the end-user. So virtually all WSN applicatiom® char-
acterized by local processing of the sensed dta [3

Many-to-Few: Since radio transmissions are very expensive

in terms of energy, they must be kept to a minimarnorder
to extend node lifetime. Data communication mustraded
for on-the-node computation to save energy, SO ns@mgor
readings can be reduced to a few useful data values

Application-Specific: A “one-size-fits-all” solution does not
exist since a general purpose processor is fapdaer hungry
for the sensor node’s limited energy budget. ASI@s,the
other hand, are more energy efficient but lack fteeibility
to facilitate many different applications.

Apart from the above characteristics of WSNs, tvey k
requirements for improving existing processing amohtrol
architectures can be identified.

Minimize Memory Access. Modern micro-controllers
(MCU) are based on the principles of a divide-andepier
strategy of ultra-fast processors on the one hawdaabitrary
complex programs on the other hand [4]. But dudhi®
generic approach, algorithms are deemed to spertd d4p—
60% of the time in accessing memory [5], making hottle-
neck [6]. In addition, the lack of task-specificepgtions leads
to inefficient execution, which results in longégaithms and
significant memory book keeping.

Combine Data Flow and Control Flow Principles: To man-
age the data stream (to/from data memory) andni$teuiction
stream (from program memory) in the core functionait,
two approaches exist. Under control flow, the dstteam is
a consequence of the instruction stream, while urdiga
flow the instruction stream is a consequence of da¢a
stream. A traditional processor architecture isoatl! flow
machine, with programs that execute sequentiallg ageam
of instructions. In contrast, a data flow prograteritifies the
data dependencies, which enable the processor 1® ondess
choose the order of execution. The latter apprdashbeen
hugely successful in specialized high-throughpuyliaptions,
such as multimedia and graphics processing. Thismpshows
how a combination of both approaches can leadstgraficant
improvement over traditional WSN data processirigtems.
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Fig. 1. A binary tree (left, 7 PEs) is functionakyuivalent to the novel

folded tree topology (right, 4 PEs) used in thieh#ecture.
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I11. PROPOSEDAPPROACH

A. WSN Applications and On-The-Node Data Aggregation

Notwithstanding the seemingly vast nature of WSHKliap-
tions, a set of basic building blocks for on-theleg@rocessing
can be identified. Common on-the-node operatiombpaed
on input data collected directly from the node'sis®s or
through in-the-network aggregation include filtgrirfitting,
sorting, and searching [7]. We published earligrtfiat these
types of algorithms can be expressed in terms i@fllpaprefix
operations as a common denominator.

Prefix operations can be calculated in a numbevayfs [8],
but we chose the binary tree approach [9] becatsséow
matches the desired on-the-node data aggregatits. CBn
be visualized as a binary tree of processing el¢ésn@?Es)
across which input data flows from the leaves te tbot
(Fig. 1, left). This topology will form the fixedgpt of our
approach, but in order to serve multiple appliaagidlexibility
is also required. The tree-based data flow wileréiore, be
executed on a data path of programmable PEs, vgnmhides
this flexibility together with the parallel prefeoncept.

B. Parallel Prefix Operations

In the digital design world, prefix operations abest
known for their application in the class of carpok-ahead
adders [10]. The addition of two inpusand B in this case
consists of three stages (Fig. 2): a bitwise prapagenerate
(PG) logic stage, a group PG logic stage, and astage.

The outputs of the bitwise PG stage & A @ B; and

b
4
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Fig. 3. Example of a prefix calculation with sumeogtor using Blelloch’s
generic approach in a trunk- and twig-phase.

For example, the binary numbefs = “1001” and B =
“0101” are added together. The bitwise PG logit.8B-first
noted A = {1003} and B = {1010Q returns the PG-pairs for
these values, namelyP, G) = {(0, 1); (0, 0); (1, 0); (1, O)}.
Using these pairs as input for the group PG-netywoeiined
by the o-operator from (1) to calculate the prefix openatio
results in the carry-arrag = {1,0,0, 0} [i.e., the second
element of each resulting pair from (1)]. In factcontains
all the carries of the addition, hence the nameyckok-
ahead. Combined with the corresponding propagdtesE;

this yields the suns = {0111}, which corresponds to “1110.”
The group PG logic is an example of a parallelipredm-

putation with the giver-operator. The output of this parallel-
prefix PG-network is called the all-prefix set dhefil next.

Given a binary closed and associative operator with
identity element| and an ordered set oh elements
[ag, a1, @y, ..., ay—1], the reduced-prefix set is the ordered
set[l, ag, (ageay), ..., (@goage - - -oan_p)], while the all-prefix
set is the ordered sdby, (g © a1),...,(@cag o+ -+ oap-1)],
of which the last elementago aj o - - + o a,_1) is called the
prefix element.

For example, ife is a simple addition, then the prefix
element of the ordered si&,1,2,0,4,1,1,3] is L,a = 15.
Blelloch’s procedure [9] to calculate the prefixepgtions on
a binary tree requires two phases (Fig. 3). Intthek-phase,
the left value L is saved locally as Lsave andsiadded to
the right value R, which is passed on toward tha.r@his
continues until the parallel-prefix element 15 durid at the
root. Note that each time, a store-and-calculateratn is
executed. Then the twig-phase starts, during wath moves
in the opposite direction, from the root to theviksa Now
the incoming value, beginning with the sum idengtgment
0 at the root, is passed to the left child, whilesialso added
to the previously saved Lsave and passed to the cigild.
In the end, the reduced-prefix set is found atl¢lawes.

An example application of the parallel-prefix ogara with
the sum operator (prefix-sum) is filtering an arswythat all
elements that do not meet certain criteria areréid out. This
is accomplished by first deriving a “keep”-arraglding “1”
if an element matches the criteria and “0” if ibald be left
out. Calculating the prefix-sum of this array wiéturn the

Gi = A - B;) are fed agP,, Gj)-pairs to the group PG logicamount as well as the position of the to-be-kegtneints of the

stage, which implements the following expression
(R, Gi)o(P+1,Gi+1) = (R - P+1,Gi + B - Git1) (1)

It can be shown this-operator has an identify element=
(1,0) and is associative.

input array. The result array simply takes an elgnfiom the
input array if the corresponding keep-array elenierit” and
copies it to the position found in the correspogdaement
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of the prefix-sum-array. To further illustrate th&ippose the
criterion is to only keep odd elements in the amag throw
away all even elements. This criterion can be fdated as

keefdx) = (x mod 2. The rest is calculated as follows:

input = [2,3,8,7,6,2,1,5]
keep=[0,1,0,1,0,0,1,1]
prefix =[0,1,1,2,2,2,3,4]
result = [3,7,1,5].

The keep-array provides the result of the ddte Then
the parallel-prefix with sum-operator is calculateshich
results in the prefix-array. Its last element imdés how many
elements are to be kept (i.e., 4). Whenever the-kemay
holds a “1,” the corresponding input-element ispied in
the result-array at the index given by the corresim
prefix-element (i.e., 3 to position 1, 7 to pogitid, etc.). This
is a very generic approach that can be used in icwtibn
with more complex criteria as well.

Other possible applications that relate to WSNhiohe peak
detection, polynomial evaluation for model-fittintgxically
compare strings, add multi-precision numbers, detearked
elements from arrays, and quick sort [3], [11]. 8oof these
will be used as a case-study later in Section VII.

C. Folded Tree

However, a straightforward binary tree implemewtatof
Blelloch’s approach as shown in Fig. 3 costs a igant
amount of area as inputs requirep = n — 1 PEs. To reduce
area and power, pipelining can be traded for thnpug [8].
With a classic binary tree, as soon as a layerks fhishes
processing, the results are passed on and newlat#ois can
already recommence independently.

The idea presented here is to fold the tpeek onto

itself to maximally reuse the PEs. In doing pobecomes .

proportional ton/2 and the area is cut in half. Note that ald i ) : )
¢ of active PEs while progressing from stage to stage first

the interconnect is reduced. On the other handyutirpu
decreases by a factor of lfg) but since the sample rat
of different physical phenomena relevant for WShgginot
exceed 100 kHz [12], this leaves enough room fisrtladeoff

to be made. This newly proposed folded tree tpol is

depicted in Fig. 1 on the right, which is functiipequivalent

to the binary tree on the left.

IV. PROGRAMMING AND USING THEFOLDED TREE

Now it will be shown how Blelloch’s generic apprbaior
an arbitrary parallel prefix operator can be progred to
run on the folded tree. As an example, the sumaipers
used to implement a parallel-prefix sum operationao4-PE
folded tree.

First, the trunk-phase is considered. At the togiof 4,
a folded tree with four PEs is drawn of which PE® &#E4
are hatched differently. The functional equivalbiary tree
in the center again shows how data moves from setiveoot
during the trunk-phase. It is annotated with thtets L and
R to indicate the left and right input value of ip A and B.
In accordance with Blelloch’s approach, L is sa@sdLsave
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Fig. 4. Implications of using a folded tree (folRE-folded tree shown at the
top): some PEs must keep multiple Lsave’s (cenBmjtom: the trunk-phase
program code of the prefix-sum algorithm on a 4f8lHed tree.

and the sum &R is passed. Note that these annotations are
not global, meaning that annotations with the saame do
not necessarily share the same actual value.

To see exactly how the folded tree functionallydrees a
binary tree, all nodes of the binary tree (cenfeFig. 4) are
assigned numbers that correspond to the PE (1 ghrdy,
which will act like that node at that stage. As dan seen,
PE1 and PE2 are only used once, PE3 is used twitdP&4
5 used three times. This corresponds to a deagasimber

oStage has all four PEs active. The second stagéenmoaactive
PEs: PE3 and PE4. The third and last stage has amy
active PE: PE4. More importantly, it can also bensthat PE3
and PE4 have to store multiple Lsave values. PEdt kkeep
three: LsaveO through Lsave2, while PE3 keeps twsaveO
and Lsavel. PE1 and PE2 each only keep one: Lsavaf.
has implications toward the code implementatiotheftrunk-
phase on the folded tree as shown next.

The PE program for the prefix-sum trunk-phase Ve giat
the bottom of Fig. 4. The description column shdwsv data
is stored or moves, while the actual operationivergin the
last column. The write/read register files (RF)urnhs show
how incoming data is saved/retrieved in local R§, X @0bY
meansX is saved at addres9¥, while (bY @X loads the
value at @Y into X. Details of the PE data path (Fig. 8)
and the trigger handshaking, which can make PE$ foai
new input data (indicated by), are given in Section V. The
trunk-phase PE program here has three instructwnsh are
identical, apart from the different RF addresses #dre used.
Due to the fact that multiple Lsave’s have to bmed, each
stage will have its own RF address to store antkvetthem.
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Fig. 5. Annotated twig-phase graph of 4-PE folthee.

This is why PE4 (active for 3 stages) needs thme#uctions
(Iines©-®), PE3 (active for 2 stages) needs two instructions
(lines@-D) and PE1 and PE2 (active in first stage only) need
one instruction (Iin(@). This basically means that the folding :
of the tree is traded for the unrolling of the mang code. o

Now, the twig-phase is considered using Fig. 5. Tiee
operates in the opposite direction, so an inconaaige (anno-
tated as S) enters the PE through its O port [sgeditop)].
Following Blelloch’s approach, S is passed to tef &nd
the sum S+ Lsave is passed to the right. Note that here as
well none of these annotations are global. The thayPEs
are activated during the twig-phase again influsrivew the
programming of the folded tree must happen. Toarphis,
Fig. 6 shows each stage of the twig-phase (as showig. 5)
separately to better see how each PE is activatedgithe
twig-phase and for how many stages. The annotatonthe
graph wires (circled numbers) relate to the ingtomclines
of the program code shown in Fig. 7, which will albe
discussed. o

Fig. 6 (top) shows that PE4 is active during atbthstages Lspa%iz
of the twig-phase. First, an incoming value (instbase the i
identity element S2) is passed to the left. Theis added to
the previously (from the trunk-phase) stored Lsavae and _ . _ _ _

. . . . Fig. 6. Activity of different PEs during the staget the twig-phase for a
passed to the right. PE4-instructi@hwill both pass the sum 4-pE folded tree: PE4 (top), PE3 (center), PE1RiEE (bottom).
Lsave2+ S2 = S1 to the right £ itself) and pass this S1 also _ o
the left toward PE3. The same applies for the imsttuction ~Store Lsave values) are different. Second, the fieér stores
@, The last instructio® passes the sum Lsave80. incoming values SO and S1 from PE4, while the sequair

Looking at the PE3 activity [Fig. 6 (center)],stonly active does not store anything. These differences dubetddiding,
in the second and third stage of the twig-phasés Indeed @gain lead to unrolled program code for PE3.
only triggered after the first stage when PE4 pasS2 to  Last, PE1 and PE2 activity are shown at the bottdm
the left. The first PE3-instructié® passes S2 to PE1, and9- 6: They each execute two instructions. Fitst,incoming
instruction@adds this to the saved Lsavel, passing this sﬁfﬁ'lue |s_passed to the Ieft,_followed by passiregstim of th_|s
T1 to PE2. The same procedure is repeated forniteming value V\_"th Lsave0 to the right. The program codeloth is
S1 from PE4 to PE3, which is passed to its lefittirction?), shown in the bottom two tables of Fig. 7.
while the sum Lsave0+S1 is passed to its rightr@m;'on®).
In fact, two pairs of instructions can be identifighat exhibit
the same behavior in terms of its outputs: thetiicsibn-pair Fig. 8(a) gives a schematic overview of the impleted
© and Oand the instruction-paidand 32 Two things are folded tree design. The ASIC comprises of eightniibal
different however. First, the used register addrege.g., to 16-bit PEs (Fig. 10), each consisting of d@adpath with

W\
ik

3id

- staae

V. HARDWARE IMPLEMENTATION
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Fig. 7. Program
folded tree.

of the twig-phase of the prefix salgorithm for a 4-PE

programmable controller and 26 36 bit instruction memory.

They are interconnected through the request-aclauye
handshaking trigger bus and the bidirectional dats in the

folded way (cf. Fig. 1). Handshaking triggers aatiev the
PEs only when new data is available and in suchagp tlat
they functionally become a binary tree in both diens of
the trunk- and twig-phase. Within each data pail.[B(b)],

muxes select external data, stored data or thaguevesult
as the next input for the data path. The data pattiains an
algorithmic logical unit (ALU) with four-word deepegister
fles (RF-A and RF-B) at the inputs A and B for oged
isolation. These RFs comprise the distributed datanory
of the whole system, with a combined capacity of k.

They are the only clocked elements within the qmth. As
data flows through the tree, it is constantly kil to its
designated operation. This is one of the goalshisf paper,
which effectively removes the von Neumann bottlénand

Conrroi

| ameom
angaq

data hus

|

SOR =Tt
EC!

(b)

Fig. 8. Schematic diagram of design overview.T@)-level view (here with
four PEs shown). (b) Detail of one PE data path

Fig. 9.

View of the lab measurement setup fer fiided tree IC.

saves power. The design targets 20-80-MHzabpe at
1.2 V. It was fabricated in 130-nm standard cell CMOS.

A PE takes six (down-phase) or seven (up-phasdg¢syo
process one 36-bit instruction, which can be ditid#o three
stages.

1) Preparation, which acknowledges the data and dteets

core when input triggers are received (1 cycle).

2) Execution, which performs the load-execute-jumpgesa
to do the calculations and fetch the nendtruction
pointer (4 cycles).

3) Transfer, which forwards the result by triggerihg hext
PE in the folded tree path on a request-acknowdedg
basis (1-2 cycle).

This is tailored toward executing the key store-aaltulate
operation of the parallel prefix algorithm on aeties described
earlier in Section 1lI-B. Combined with the flexity to
program the PEs using any combination of operateadable
in their data path, the folded tree has the freedomun a
variety of parallel-prefix applications [11].

V1. EXPERIMENTAL VALIDATION

The measurement setup (Fig. 9) of the chip usegatig
interfacing over universal serial bus (USB) to ascthe data
I/O, programming, and debug facilities. The data lsee
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Fig. 10. Die photograph of the implemented precesvith eight PEs.

TABLE |
LEAKAGE POWER AND DYNAMIC ENERGY FORONE PE
UNDERNOMINAL CONDITIONS (20 MHz, 1.2 V)

Active Idle  PE Instr.
B PE cote PE core  Mem.
Dynamic energy/instr (pl) 146 4.7 2.10
Leakage power (LW} 0.03 0.03 0.01
Total power @ 20 MHz (pW)  41.7 13.5 6.0

Fig. 8(a)] activity can be monitored and plotted, will be
shown in Section VII.

A. PE Measurements

TABLE Il
FoLpeD TREE CIRCUIT WITH EIGHT PESEXECUTING A TRUNK-PHASE
UNDER NOMINAL ConDITIONS (20 MHz, 1.2 V)

NGNS

Mem.

TABLE I
ENERGY PER INSTRUCTION OFRELATED WORK, NORMALIZED
T70130nm, 1.2 VAND 16817 [13]-{16]

Cl

Efinstr | Norm. E/instr

L Ore

SNAPILE

one single PE

are often left with only the energy-per-instructioretric to
compare different systems. Table Il presentsstanmary
of related academic work. The listed energy-petrircsion
values are normalized to the presented work usitigwing

formula
Enorm = Eorig X 130 nniL x (1.2 V/Vdd)2 X 16 bit W (2)

given energy per instructidgyyig, process., supplyVgq, and
data path bitwidth/V of the other system. This work requires

The PE table in Table | gives the dynamic energyl ag gast 4.3 less in terms of energy per instruction. The notion

leakage power for one PE core running at 20 MHz kadv

supply under full stress with varying data inputsconsumes
42 yW or 2.1 yW/MHz, including 0.03uW leakage. The
register-based instruction memory power valuespaesented
in last column of the PE table and consumeV8. When

going into Idle mode, a PE will consume 60% lesantlin

Active mode.

of an instruction, however, might significantlyfeif especially
as WSN systems often employ specific instructiots sad
specialized hardware to reach extreme energy efiigi This
is the case for this work as well since the bermdfihe parallel
prefix-sums framework cannot be fully quantifiedngs the
small-scale energy-per-instruction metric.

To validate the measurements and to check whetteer c Algorithmic Unit

derived values for a single PE are correct, theycambined in
an estimate for the folded tree design with eighs.PWhen
such a folded tree executes a trunk-phase, it take four
stages to reach the root. Thanks to the handshaiingach
stage, the number of active PEs is cut in half a4,&, 1.
The number of idle PEs increases accordingly a4, @, 7.
This makes a total of 15 active PEs and 17 idle. Fs
combining this information with the PE’s consumptiche
folded tree consumption can be estimated. As casebe in
the table of Table II, this closely matches the soead values
for the folded tree. The last column also takesitisgruction
memories into account. Overall, the folded treecpssor
consumes 255W or 13 pJ/cycle, including memories.

B. Energy-Per-Instruction

A standard benchmark suite of applications for WS/N-
tems does not exist though some initial attemptge Hzeen
made [17], [7]. Without running the same applicasioon
each platform, it is not possible to fairly compae@ergy
efficiency, performance, and flexibility. This ispecially true
for academic results, which all revert to differéeinchmarks
due to the lack of a standard suite. As a consemyeaaders

A better metric for comparison is the energy pgoathmic
unit (AU). The AU is a sequence of frequently ussdps
in the target applications. To calculate this noetd com-
plete data sheet with full instruction set and ifiedapower
measurements is needed. In contrast to academic Wos
information is readily available for many commetd#CUs.

Given the context of WSN applications, the AU igimied
as a load-execute-store-jump sequence, which Iy in
data processing algorithms that loop over datayarr&or
each MCU, the total number of cycles for the AU wsatce
is calculated. Each time, the most efficient instians are
chosen from each MCU's specific instruction sete Bmergy
per cycle is based on the information found in daga sheet
and normalized using (2). Table IV presents thaitieof this
comparison. The OpenMSP 430 [18], which is an cgmurce
model of the widely-used MSP430 MCU, is also ineldd
It has been taken through sign-off P&R for accunadever
simulation results. A single PE outperforms otheCW4 by
at least 2& in terms of energy, requiring only 2.4 pJ per cycle
or 16.8 pJ per AU at equal clock speed.

To correctly compare the MCUs with the eight PEshia
folded tree, the parallel aspect of the latter setedbe taken
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TABLE IV
COMPARING TOTAL ENERGY FOR THEALGORITHMIC UNIT (AU) SEQUENCE(L OAD-EXECUTE-STORE-JUMP)

DP  Memory Process Supply VDD  Clk  Energy/cycle Normalized | Algo Unit Algo Unit
ATxr;ég:fﬂzsm g g 250 1100 30 2 1650 2746 ~ 8 2196
T C 16 4 180 2840 30 20 426 49.2 8 394
This work — 1F 16 05 130 40 12 20 24 2.4 7 17
This work — Tree i6 4 130 214 1.2 20 i2.5 i2.8 7 S0
\L;Lllurrl;ubeulweer:t;uurun knovan) gcyZe;P —unk
e m— — =
"t power of a idle Iree. measuren; PE 8 |—|_|—|_|—ur|_|—|_|—umr|_|—|_|—umr|_
Jap 4 (1-a) e, PE7 L L L L L L L L
. o PES LT LI LI LI
Fig. 11. Time definitions for loop-runs. L
PES [ LI LI LI LI
into account. As derived earlier, a folded treeight PEs will PE4 LM
execute 15 AU’s over four stages or 3.75 on averbigether PE3 |—|_|—|_|—|
words, the folded tree must be compared to thevalguit PE2 1 |
of 3.75 MCUs. The folded tree then outperforms dlusest I_I_I_I_I_l
: PE -
competitor MSP430 by at least5n terms of energy. - 'I_I_I_I_I_l
VIl. CASE-STUDIES OFEXAMPLE ALGORITHMS Fig. 12. Peak detection and polynomial evaluatitgorithm PE activity.

Finally, despite the lack of standardized benchmedo-
rithms, a selection of four relevant example aldpons is
made. Each of these algorithms will be introduced mea-
sured for their performance in terms of energy oomgion
and speed. The result is compared to the perforenafithe
OpenMSP430. Based on the previous experimentsjsthise
closest competitor. The most efficient MSP430-indiions are
again used.

With regards to the implemented ASIC (Fig. 10)trategy
must be developed for measuring the correct enemggump-
tion. Simply executing an algorithm on the foldedet once
is too fast to measure anything useful. So alterslgt the
same algorithm can be executed multiple times. &dvd a
correct energy value, the loop overhead time mastaien
into account. This can be accomplished by also urgasthe
idle consumption and calculating the ratio of actlgorithm
time versus overall time, including loop overhead.

The activity of a looping run of an algorithm igpresented
in Fig. 11. When an algorithm is looping, it wilke bactive

from the expression

a: Pun+ (1—0a) Pge = Payg

3)

The different times can be calculated (Fig. 11)edasn the
algorithm program code and checked against theityctf
the data bus. Examples of such activity plots Wwél shown
in the following sections along with the measuretsef the
example algorithms.

A. Peak Detection

WSN nodes are often involved in operational modes t
only activate when a certain trigger level is restlover a set
of readings during an amount of time, e.g., to @ntoom

heating. The operator needed for finding the marmnsia o
b=(a>b?a:b).

Fig. 12 presents the PE activity of a single ruttenfolded
tree chip for this algorithm. It shows eight tradgaswhich
each “1” represents the completion of an instructy the

for a time tyn during which it will consume an amount ofcorresponding PE. Fig. 12 shows the four stagemgluhe
power Py, The run timety,, can be directly derived from trunk-phase of an eight-PE folded tree, correspant 8, 4,

the number of instructions in the program code. Tihee
between two runs within the lodppis also known. This
time is significant, since for this measurementftided tree

2, and 1 active PEs.
The complete algorithm takégn, = 4 groupsx 3 instrx 7
cycl/instr (trunk-mode)x 50 ns/cycl (@ 20 MHz}= 4200 ns

is controlled in MkTLAB by a UART-over-USB interface of 780r a = 3.3% which, together with the measurdt,y =
125 baud or 12@s between restarts. The ratio of these twd46 uW, leads toEn, = 986 pJ. Including the instruction

a = tunltioop, returns the percentage of algorithm activit
with respect to the total loop time. The inversgorads the
actual loop time overhead percentage.

The average power consumption of the looped alyorit
Pavg: can be measured. Also, the idle consumption eftribe,
Pigle, can be measured. The souBht, can then be calculated

ymemory, the total energy consumptionBgyy = 1265 pJ,

compared to 9538 pJ for the MSP430.

B. Evaluate Polynomial

Various polynomial models exist to fit sensor ditarder
to decide whether this data is useful or not anéthdr any
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Fig. 13. All-prefix sum algorithm PE activity.

action should be undertaken. [19] shows how-aX)-th order
polynomiala, + ap_1x1+ - - - +a;x"~1 can be evaluated with
parallel-prefix operations by pairing the coeffitie together
with the desired evaluation value

The same Fig. 12 can be used in this case asAllbugh
the program code and structure differs from theiptes algo-
rithm, they both execute a trunk-phase in four etagf three
instructions. The complete algorithm takeg = 4 groups *
3 instr * 7 cyclfinstr (trunk-mode) * 50 ns/cycl (@D MHz)

= 4200 ns ora = 3.3% which, together with the measured z

Pavg = 150 pW, leads toEnn = 1431 pJ. Including the

instruction memory, the total energy consumptiortiga =
1697 pJ, compared to 11289 pJ for the MSP430.

C. All-Prefix Sum

Fig. 13 presents the PE activity of the all-prefixm
algorithm described earlier in Section IlI-B. Agaihe four
stages during the trunk-phase of a eight-PE foluled can
be seen, corresponding to 8, 4, 2, and 1 active Rifex the
transition to twig-phase, the different triggerimfthe different
PEs can be deduced. For example, the twig-phads atathe
root PE8 with passing the identity element to thig¢, where
PE7 is indeed the first one to start after PES.

The complete algorithm takég, = [4 instr X 7 cycl/instr
(trunk-mode) + (1+9) instr * 6 cycl/instr (twig-mode)] *
50 ns/cycl (@ 20 MHz)= 4400 ns ora = 3.4% which,

together with the measurdey,g = 147 yW, leads toEy, =
1183 pJ. Including the instruction memory, the lt@aergy

Trunk ‘ Twié N
gigligh gig
PE7 [T gligigh
PE6 [ [ sinl
PEs LI A
PE 3 |_|_|_|
Fig. 14. Find elements algorithm PE activity.
1? | Folded Tree .
= 12— ::eed g;in 3
5 10 — é
3 s N

, mm N ey .

—0
Evaiuate poiynamiai
Peak detection

All-prefix-sums willn +
Find elements

Fig. 15. Total energy consumption of example @tlgms (20 MHz, 1.2 V).

against the searched value and pass a “1” if mdfct@
otherwise. The resulting array of eight elementthén taken
through a parallel prefix sum operation. In othesrads, a
prefix-sum essentially using a 4-PE folded treeretiethe
activity and triggering of the different PEs can ¢beduced
and corresponds to what was shown earlier in Higsnd 6.
The complete algorithm takdgn = [4 instr * 5 cycl/instr
(trunk-mode) + (1+5) instr * 6 cycl/instr (twig-mode)] *
50 ns/cycl (@ 20 MHz)= 3550 ns ora = 2.7% which,
together with the measurdel,g = 146 yW, leads toEq, =
908 pJ. Including the instruction memory, the totalergy
consumption isEiotg = 1140 pJ, compared to 7974 pJ for
the MSP430.

consumption isEta = 1492 pJ, compared to 8319 pJ for thg Reqits

MSP430.

D. Find Elements in Array
The flag function needed for finding matching eletse

between two arrays iE(a,b) = (a =Db ? 1: 0). Comparable
to the selection example under Section 1lI-B, thefig-sum
of this array can be used to retrieve the indethefmatched
elements [11].

Fig. 14 presents the PE activity of a single amthe

All case-study results are summarized in Table d &B.
The folded tree outperforms the MSP430 by 8<10 terms
of energy and at least 2x3n terms of execution time. Note
that this speed gain can be traded for eaweme energy-
efficient execution by lowering the supply voltagatil an
equal throughput is reached. Operating at halffteguency
(10 MHz) and a minimal supply voltage of 0.79 Veth
processor consumes about half the energy. A saxfiee PE
core will now only consume 0.98N/MHz, including leakage.

folded tree chip of this algorithm. In the firstdvsteps, all Overall, the folded tree processor now consumesnditav
PEs execute two instructions to compare ak 3 elements 80 W or 8 pJ/cycle and running the example algorithms,
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TABLE V
ToTAL ENERGY CONSUMPTION OFEXAMPLE ALGORITHMS (20 MHz, 1.2 V)

Algorithm Run-time

(1.2V @ 20MHz)

alpha
=128us
Lelw]

Run-time (ns)

(ns) T

All-prefix sum

Peak detection

it outperforms other MCUs by at least>20n terms of total
energy. Finally, the folded tree chip was combinitti a radio
and sensor on a prototype sensor node. Measurelinelivs
cated that using the proposed architecture sigmiflg reduces
radio communication and, in a typical WSN applicatican
save up to 70% of the total sensor node energy.

VIII.

This paper presented the folded tree architectiigedigital
signal processor for WSN applications. The desigplaits
the fact that many data processing algorithms foSNN
applications can be described using parallel-prefigrations,
introducing the much needed flexibility. Energgéved thanks
to the following: 1) limiting the data set by prespessing with
parallel-prefix operations; 2) the reuse of theabyntree as a
folded tree; and 3) the combination of data flovd aontrol
flow elements to introduce a local distributed meynavhich
removes the memory bottleneck while retaining sifit
flexibility.

The simplicity of the programmable PEs that constithe
folded tree network resulted in high integratioastf cycle
time, and lower power consumption. Finally, measwets
of a 130-nm silicon implementation of the 16-bitdied tree
with eight PEs were measured to confirm its peréomoe. It
consumes down to 8 pJ/cycle. Compared to existimgneer-
cial solutions, this is at least %0Oless in terms of overall
energy and 2-8 faster.

CONCLUSION
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