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Abstract— Radio communication exhibits the highest energy 
consumption in wireless sensor nodes. Given their limited energy 
supply from batteries or scavenging, these nodes must trade data 
communication for on-the-node computation. Currently, they are 
designed around off-the-shelf low-power microcontrollers. But 
by employing a more appropriate processing element, the energy 
consumption can be significantly reduced. This paper describes 
the design and implementation of the newly proposed folded-tree 
architecture for on-the-node data processing in wireless sensor 
networks, using parallel prefix operations and data locality in 
hardware. Measurements of the  silicon  implementation  show 
an improvement of 10–20× in terms of energy as compared to 
traditional modern micro-controllers found in sensor nodes. 

 

keywords—Digital processor, parallel prefix, wireless sensor 
network (WSN). 

I.  INTRODUCTION 
 

WIRELESS sensor network (WSN) applications range from  
medical  monitoring to  environmental sensing, industrial 
inspection, and military surveillance. WSN nodes essentially 
consist of sensors, a radio, and a microcontroller combined 
with a limited power supply, e.g., battery or energy 
scavenging.  Since  radio  transmissions  are  very  expensive 
in  terms  of  energy,  they  must  be  kept  to  a  minimum  in 
order to extend node lifetime. The ratio of communication-to- 
computation energy cost can range from 100 to 3000 [1]. So 
data communication must be traded for on-the-node processing 
which  in  turn  can  convert  the  many  sensor  readings  into 
a  few useful data values. The data-driven nature of WSN 
applications  requires  a  specific  data  processing  approach. 
Previously, we have shown how parallel prefix computations 
can be a common denominator of many WSN data processing 
algorithms [2]. The goal of this paper is to design an ultra- 
low-energy WSN digital signal processor by further exploiting 
this and other characteristics unique to WSNs. 

First, Section II lists these specific characteristics of WSN- 
related on-the-node processing. Then, Section III covers the 
proposed approach to exploit these properties. Section IV 
elaborates on the programming and usage of the  resulting 
folded tree architecture. Section V discusses the application- 
specific integrated circuit (ASIC) implementation of the design 
while Section VI measures its performance and Section VII 

illustrates the usefulness to WSNs with four relevant 
case- studies. Finally, the work is concluded in Section VIII. 

II.  CHARACTERISTICS OF WSNS AND RELATED 

REQUIREMENTS FOR PROCESSING 

Several specific characteristics, unique to WSNs, need to 
be considered when designing a data processor architecture 
for WSNs. 

Data-Driven: WSN applications are all about sensing data 
in an environment and translating this into useful information 
for the end-user. So virtually all WSN applications are char- 
acterized by local processing of the sensed data [3]. 

Many-to-Few: Since radio transmissions are very expensive 
in terms of energy, they must be kept to a minimum in order 
to extend node lifetime. Data communication must be traded 
for on-the-node computation to save energy, so many sensor 
readings can be reduced to a few useful data values. 

Application-Specific: A “one-size-fits-all” solution does not 
exist since a general purpose processor is far too power hungry 
for the sensor node’s limited energy budget. ASICs, on the 
other hand, are more energy efficient but lack the flexibility  
to facilitate many different applications. 

Apart from the above characteristics of WSNs, two key 
requirements for improving existing processing and control 
architectures can be identified. 

Minimize   Memory   Access:   Modern   micro-controllers 
(MCU) are based on the principles of a divide-and-conquer 
strategy of ultra-fast processors on the one hand and arbitrary 
complex programs on the other hand [4]. But due to this 
generic approach, algorithms are deemed to spend up to 40– 
60% of the time in accessing memory [5], making it a bottle- 
neck [6]. In addition, the lack of task-specific operations leads 
to inefficient execution, which results in longer algorithms and 
significant memory book keeping. 

Combine Data Flow and Control Flow Principles: To man- 
age the data stream (to/from data memory) and the instruction 
stream (from program memory) in the core functional unit, 
two approaches exist. Under control flow, the data stream is 
a consequence of the instruction stream, while under data 
flow the instruction stream is a consequence of the data 
stream. A traditional processor architecture is a control flow 
machine, with programs that execute sequentially as a stream 
of instructions. In contrast, a data flow program identifies the 
data dependencies, which enable the processor to more or less 
choose the order of execution. The latter approach has been 
hugely successful in specialized high-throughput applications, 
such as multimedia and graphics processing. This paper shows 
how a combination of both approaches can lead to a significant 
improvement over traditional WSN data processing solutions. 
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Fig. 1. A binary tree (left, 7 PEs) is functionally equivalent to the novel 
folded tree topology (right, 4 PEs) used in this architecture. 

 
 

 
 
 

Fig. 2.   Addition with propagate-generate (PG) logic. 
 
 

III.  PROPOSED APPROACH 

A. WSN Applications and On-The-Node Data Aggregation 

Notwithstanding the seemingly vast nature of WSN applica- 
tions, a set of basic building blocks for on-the-node processing 
can be identified. Common on-the-node operations performed 
on input data collected directly from the node’s sensors or 
through in-the-network aggregation include filtering, fitting, 
sorting, and searching [7]. We published earlier [2] that these 
types of algorithms can be expressed in terms of parallel prefix 
operations as a common denominator. 

Prefix operations can be calculated in a number of ways [8], 
but we chose the binary tree approach [9] because its flow 
matches the desired on-the-node data aggregation. This can 
be visualized as a binary tree of processing elements (PEs) 
across which input data flows from the leaves to the root 
(Fig. 1, left). This topology will form the fixed part of our 
approach, but in order to serve multiple applications, flexibility 
is also required. The tree-based data flow will, therefore, be 
executed on a data path of programmable PEs, which provides 
this flexibility together with the parallel prefix concept. 

 
B. Parallel Prefix Operations 

In the digital design world, prefix operations are best 
known for their application in the class of carry look-ahead 
adders [10]. The addition of two inputs A and B in this case 
consists of three stages (Fig. 2): a bitwise propagate-generate 
(PG) logic stage, a group PG logic stage, and a sum-stage. 

The outputs of the bitwise PG stage ( Pi = Ai ⊕ Bi and 
Gi = Ai · Bi ) are fed as (Pi , Gi )-pairs to the group PG logic 
stage, which implements the following expression: 

(Pi , Gi ) ∘ (Pi+1 , Gi+1 ) = (Pi · Pi+1 , Gi + Pi · Gi+1 ) (1) 

It can be shown this ∘-operator has an identify element I = 
(1, 0) and is associative. 

 
 

Fig. 3. Example of a prefix calculation with sum-operator using Blelloch’s 
generic approach in a trunk- and twig-phase. 

 
For example, the binary numbers A = “1001” and B = 

“0101” are added together. The bitwise PG logic of LSB-first 
noted A = {1001} and B = {1010} returns the PG-pairs for 
these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0); (1, 0)}. 
Using these pairs as input for the group PG-network, defined 
by the ∘-operator from (1) to calculate the prefix operation, 
results in  the carry-array G = {1, 0, 0, 0} [i.e., the second 
element of each resulting pair from (1)]. In fact, it contains 
all the carries of the addition, hence the name carry look- 
ahead. Combined with the corresponding propagate values Pi , 

this yields the sum S = {0111}, which corresponds to “1110.” 
The group PG logic is an example of a parallel prefix com- 

putation with the given ∘-operator. The output of this parallel- 
prefix PG-network is called the all-prefix set defined next. 

Given a binary closed  and  associative  operator  ∘  with 
identity   element   I   and   an    ordered    set    of    n    elements 
[a0, a1, a2, . . . , an−1],  the  reduced-prefix   set   is   the   ordered 
set [I, a0, (a0 ∘a1), . . . , (a0 ∘a1∘· · ·∘an−2)], while the all-prefix 
set is the ordered set [a0, (a0 ∘ a1), . . . , (a0 ∘ a1 ∘ · · · ∘ an−1)], 
of which the last element (a0 ∘ a1 ∘ · · · ∘ an−1) is called  the 
prefix   element. 

For example, if ∘ is a simple addition, then the prefix 
element of the ordered set [3, 1, 2, 0, 4, 1, 1, 3] is L,ai = 15. 
Blelloch’s procedure [9] to calculate the prefix-operations on 
a binary tree requires two phases (Fig. 3). In the trunk-phase, 
the left value L is saved locally as Lsave and it is added to 
the right value R, which is passed on toward the root. This 
continues until the parallel-prefix element 15 is found at the 
root. Note that each time, a store-and-calculate operation is 
executed. Then the twig-phase starts, during which data moves 
in the opposite direction, from the root to the leaves. Now 
the incoming value, beginning with the sum identity element 
0 at the root, is passed to the left child, while it is also added 
to the previously saved Lsave and passed to the right child. 
In the end, the reduced-prefix set is found at the leaves. 

An example application of the parallel-prefix operation with 
the sum operator (prefix-sum) is filtering an array so that all 
elements that do not meet certain criteria are filtered out. This 
is accomplished by first deriving a “keep”-array, holding “1” 
if an element matches the criteria and “0” if it should be left 
out. Calculating the prefix-sum of this array will return the 
amount as well as the position of the to-be-kept elements of the 
input array. The result array simply takes an element from the 
input array if the corresponding keep-array element is “1” and 
copies it to the position found in the corresponding element 
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of the prefix-sum-array. To further illustrate this, suppose the 
criterion is to only keep odd elements in the array and throw 
away all even elements. This criterion can be formulated as 

keep(x ) = (x mod 2). The rest is calculated as follows: 

input = [2, 3, 8, 7, 6, 2, 1, 5] 

keep = [0, 1, 0, 1, 0, 0, 1, 1] 

prefix = [0, 1, 1, 2, 2, 2, 3, 4] 

result = [3, 7, 1, 5]. 
 

The keep-array provides the  result  of  the  criterion.  Then 
the parallel-prefix with sum-operator is calculated, which 
results in the prefix-array. Its last element indicates how many 
elements are to be kept (i.e., 4). Whenever the keep-array 
holds a “1,” the  corresponding input-element is  copied  in 
the result-array at the index given by the corresponding 
prefix-element (i.e., 3 to position 1, 7 to position 2, etc.). This 
is a very generic approach that can be used in combination 
with more complex criteria as well. 

Other possible applications that relate to WSNs include peak 
detection, polynomial evaluation for model-fitting, lexically 
compare strings, add multi-precision numbers, delete marked 
elements from arrays, and quick sort [3], [11]. Some of these 
will be used as a case-study later in Section VII. 

 

 
C. Folded Tree 

However, a straightforward binary tree implementation of 
Blelloch’s approach as shown in Fig. 3 costs a significant 

amount of area as n inputs require p = n − 1 PEs. To reduce 
area and power, pipelining can be traded for throughput [8]. 
With a classic binary tree, as soon as a layer of PEs finishes 
processing, the results are passed on and new calculations can 
already recommence independently. 

The  idea  presented  here  is  to  fold  the  tree  back  onto 
itself to maximally reuse the PEs. In doing so, p becomes 
proportional to n/2 and the area is cut in half. Note that also 
the interconnect is reduced. On the other hand, throughput 
decreases by a factor of log2(n) but since the sample rate 
of different physical phenomena relevant for WSNs does not 
exceed 100 kHz [12], this leaves enough room for this tradeoff 
to be made. This newly proposed  folded  tree topology  is 
depicted in Fig. 1 on the right, which is functionally equivalent 
to the binary tree on the left. 

 
IV.  PROGRAMMING AND USING THE FOLDED TREE 

Now it will be shown how Blelloch’s generic approach for 
an arbitrary parallel prefix operator can be programmed to 
run on the folded tree. As an example, the sum-operator is 
used to implement a parallel-prefix sum operation on a 4-PE 
folded tree. 

First, the trunk-phase is considered. At the top of Fig. 4, 
a folded tree with four PEs is drawn of which PE3 and PE4 
are hatched differently. The functional equivalent binary tree 
in the center again shows how data moves from leaves to root 
during the trunk-phase. It is annotated with the letters L and 
R to indicate the left and right input value of inputs A and B. 
In accordance with Blelloch’s approach, L is saved as Lsave 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Implications of using a folded tree (four4-PE folded tree shown at the 
top): some PEs must keep multiple Lsave’s (center). Bottom: the trunk-phase 
program code of the prefix-sum algorithm on a 4-PE folded tree. 

 
 
 

and the sum L+R is passed. Note that these annotations are 
not global, meaning that annotations with the same name do 
not necessarily share the same actual value. 

To see exactly how the folded tree functionally becomes a 
binary tree, all nodes of the binary tree (center of Fig. 4) are 
assigned numbers that correspond to the PE (1 through 4), 
which will act like that node at that stage. As can be seen, 
PE1 and PE2 are only used once, PE3 is used twice and PE4 
is used three times. This corresponds to a decreasing number 
of active PEs while progressing from stage to stage. The first 
stage has all four PEs active. The second stage has two active 
PEs: PE3 and PE4. The third and last stage has only one 
active PE: PE4. More importantly, it can also be seen that PE3 
and PE4 have to store multiple Lsave values. PE4 must keep 
three: Lsave0 through Lsave2, while PE3 keeps two: Lsave0 
and Lsave1. PE1 and PE2 each only keep one: Lsave0. This 
has implications toward the code implementation of the trunk- 
phase on the folded tree as shown next. 

The PE program for the prefix-sum trunk-phase is given at 
the bottom of Fig. 4. The description column shows how data 
is stored or moves, while the actual operation is given in the 
last column. The write/read register files (RF) columns show 
how incoming data is saved/retrieved in local RF, e.g., X @0bY 
means X is saved at address 0bY , while 0bY @X loads the 
value at 0bY into X . Details of the PE data path (Fig. 8) 
and the trigger handshaking, which can make PEs wait for 
new input data (indicated by T), are given in Section V. The 
trunk-phase PE program here has three instructions, which are 
identical, apart from the different RF addresses that are used. 
Due to the fact that multiple Lsave’s have to be stored, each 
stage will have its own RF address to store and retrieve them. 
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Fig. 5.   Annotated twig-phase graph of 4-PE folded tree. 
 
 

This is why PE4 (active for 3 stages) needs three instructions 
(lines 0 - 2 ), PE3 (active for 2 stages) needs two instructions 
(lines 0 - 1 ) and PE1 and PE2 (active in first stage only) need 
one instruction (line 0 ). This basically means that the folding 
of the tree is traded for the unrolling of the program code. 

Now, the twig-phase is considered using Fig. 5. The tree 
operates in the opposite direction, so an incoming value (anno- 
tated as S) enters the PE through its O port [see Fig. 4(top)]. 
Following Blelloch’s approach, S is passed to the left and 
the sum S + Lsave is passed to the right. Note that here as 
well none of these annotations are global. The way the PEs 
are activated during the twig-phase again influences how the 
programming of the folded tree must happen. To explain this, 
Fig. 6 shows each stage of the twig-phase (as shown in Fig. 5) 
separately to better see how each PE is activated during the 
twig-phase and for how many stages. The annotations on the 
graph wires (circled numbers) relate to the instruction lines 
of the program code shown in Fig. 7, which will also be 
discussed. 

Fig. 6 (top) shows that PE4 is active during all three stages 
of the twig-phase. First, an incoming value (in this case the 
identity element S2) is passed to the left. Then it is added to 
the previously (from the trunk-phase) stored Lsave2 value and 
passed to the right. PE4-instruction 1 will both pass the sum 

Lsave2 + S2 = S1 to the right (= itself) and pass this S1 also 
the left toward PE3. The same applies for the next instruction 
2 . The last instruction 3  passes the sum Lsave0+S0. 

Looking at the PE3 activity [Fig. 6 (center)], it is only active 
in the second and third stage of the twig-phase. It is indeed 
only triggered after the first stage when PE4 passes S2 to 
the left. The first PE3-instruction 0 passes S2 to PE1, and 
instruction 1 adds this to the saved Lsave1, passing this sum 
T1 to PE2. The same procedure is repeated for the incoming 
S1 from PE4 to PE3, which is passed to its left (instruction 2 ), 
while the sum Lsave0+S1 is passed to its right (instruction 3 ). 
In fact, two pairs of instructions can be identified, that exhibit 
the same behavior in terms of its outputs: the instruction-pair 
0 and 1 and the instruction-pair 2 and 3 . Two things are 
different however. First, the used register addresses (e.g., to 

 
 

 
 

 

 
 

 
 

Fig. 6. Activity of different PEs during the stages of the twig-phase for a 
4-PE folded tree: PE4 (top), PE3 (center), PE1 and PE2 (bottom). 

 
store Lsave values) are different. Second, the first pair stores 
incoming values S0 and S1 from PE4, while the second pair 
does not store anything. These differences due to the folding, 
again lead to unrolled program code for PE3. 

Last, PE1 and PE2 activity are shown at the bottom of 
Fig. 6. They each execute two instructions. First, the incoming 
value is passed to the left, followed by passing the sum of this 
value with Lsave0 to the right. The program code for both is 
shown in the bottom two tables of Fig. 7. 

 

 
V.  HARDWARE IMPLEMENTATION 

Fig. 8(a) gives a schematic overview of the implemented 
folded tree design. The ASIC comprises of eight identical 
16-bit PEs  (Fig.  10), each  consisting  of  a  data  path  with 
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(b) 
 

Fig. 8.   Schematic diagram of design overview. (a) Top-level view (here with 
four PEs shown). (b) Detail of one PE data path 
. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.    View of the lab measurement setup for the folded tree IC. 
 
 

 
 
 
 
 
 

Fig. 7. Program of the twig-phase of the prefix sum algorithm for a 4-PE 
folded tree. 

 

programmable controller and 16 × 36 bit instruction memory. 
They are interconnected through the request-acknowledge 
handshaking trigger bus and the bidirectional data bus in the 
folded way (cf. Fig. 1). Handshaking triggers activate  the 
PEs only when new data is available and in such a way that 
they functionally become a binary tree in both directions of 
the trunk- and twig-phase. Within each data path [Fig. 8(b)], 
muxes select external data, stored data or the previous result 
as the next input for the data path. The data path contains an 
algorithmic logical unit (ALU) with four-word deep register 
files (RF-A and RF-B) at the inputs A and B for operand 
isolation. These RFs comprise the distributed data memory 
of the whole system, with a combined capacity of  4  kB. 
They are the only clocked elements within the data path. As 
data flows through the tree, it is constantly kept local to its 
designated operation. This is one of the goals of this paper, 
which effectively removes the von Neumann bottleneck and 

saves  power.  The  design  targets  20–80-MHz  operation  at 
1.2 V. It was fabricated in 130-nm standard cell CMOS. 

A PE takes six (down-phase) or seven (up-phase) cycles to 
process one 36-bit instruction, which can be divided into three 
stages. 

1) Preparation, which acknowledges the data and starts the 
core when input triggers are received (1 cycle). 

2) Execution, which performs the load-execute-jump stages 
to  do  the  calculations  and  fetch  the  next  instruction 
pointer (4 cycles). 

3) Transfer, which forwards the result by triggering the next 
PE  in the folded tree path on a request-acknowledge 
basis (1–2 cycle). 

This is tailored toward executing the key store-and-calculate 
operation of the parallel prefix algorithm on a tree as described 
earlier in Section III-B. Combined with the flexibility to 
program the PEs using any combination of operators available 
in their data path, the folded tree has the freedom to run a 
variety of parallel-prefix applications [11]. 

 
VI.  EXPERIMENTAL VALIDATION 

The measurement setup (Fig. 9) of the chip uses digital 
interfacing over universal serial bus (USB) to access the data 
I/O, programming, and debug facilities. The data bus [see 
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TABLE II 

FOLDED TREE CIRCUIT WITH EIGHT PES EXECUTING A TRUNK-PHAS E 

UNDER NOMINAL CONDITIONS (20 MHz, 1.2 V) 
 
 
 
 
 
 
 
 
 

Fig. 10.   Die photograph of the implemented processor with eight PEs. 

 
TABLE I 

LEAKAGE POWER AND DYNAMIC ENERGY F OR ONE PE 

UNDER NOMINAL CONDITIONS (20 MHz, 1.2 V) 

TABLE III 

ENERGY PER INS TRUCTION OF RELATED WORK, NORMALIZED 

TO 130 nm, 1.2 V, AND 16 BIT [13]–[16] 

 
 
 
 
 
 
 

Fig. 8(a)] activity can be monitored and plotted, as will be 
shown in Section VII. 

 

 
A. PE Measurements 

The PE table in Table I gives the dynamic energy and 
leakage power for one PE core running at 20 MHz and 1.2 V 
supply under full stress with varying data inputs. It consumes 
42 µW or 2.1 µW/MHz, including 0.03 µW leakage. The 
register-based instruction memory power values are presented 
in last column of the PE table and consume 6 µW. When 
going into Idle mode, a PE will consume 60% less than in 
Active mode. 

To validate the measurements and to check whether the 
derived values for a single PE are correct, they are combined in 
an estimate for the folded tree design with eight PEs. When 
such a folded tree executes a trunk-phase, it will take four 
stages to reach the root. Thanks to the handshaking, at each 
stage, the number of active PEs is cut in half as 8, 4, 2, 1. 
The number of idle PEs increases accordingly as 0, 4, 6, 7. 
This makes a total of 15 active PEs and 17 idle PEs. By 
combining this information with the PE’s consumption, the 
folded tree consumption can be estimated. As can be seen in 
the table of Table II, this closely matches the measured values 
for the folded tree. The last column also takes the instruction 
memories into account. Overall, the folded tree processor 
consumes 255 µW or 13 pJ/cycle, including memories. 

 

 
B. Energy-Per-Instruction 

A standard benchmark suite of applications for WSN sys- 
tems does not exist though some initial attempts have been 
made [17], [7]. Without running the same applications on 
each platform, it is not possible to fairly compare energy 
efficiency, performance, and flexibility. This is especially true 
for academic results, which all revert to different benchmarks 
due to the lack of a standard suite. As a consequence, readers 

are often left with only the energy-per-instruction metric to 
compare different systems.  Table  III  presents  a  summary 
of related academic work. The listed energy-per-instruction 
values are normalized to the presented work using following 

formula: 

Enorm = Eorig × 130 nm/L × (1.2 V / Vdd)2 × 16 bit/ W (2) 

given energy per instruction Eorig, process L, supply Vdd , and 
data path bitwidth W of the other system. This work requires 
at least 4.3× less in terms of energy per instruction. The notion 
of an instruction, however, might significantly differ especially 
as WSN systems often employ specific instruction sets and 
specialized hardware to reach extreme energy efficiency. This 
is the case for this work as well since the benefit of the parallel 
prefix-sums framework cannot be fully quantified using the 
small-scale energy-per-instruction metric. 

 
C. Algorithmic Unit 

A better metric for comparison is the energy per algorithmic 
unit (AU). The AU is a sequence of frequently used steps 
in the target applications. To calculate this metric, a com- 
plete data sheet with full instruction set and detailed power 
measurements is needed. In contrast to academic work, this 
information is readily available for many commercial MCUs. 

Given the context of WSN applications, the AU is defined  
as  a  load-execute-store-jump sequence,  which  is  a  key  in 
data processing algorithms that loop over data arrays. For 
each MCU, the total number of cycles for the AU sequence 
is calculated. Each time, the most efficient instructions are 
chosen from each MCU’s specific instruction set. The energy 
per cycle is based on the information found in the data sheet 
and normalized using (2). Table IV presents the details of this 
comparison. The OpenMSP 430 [18], which is an open-source 
model of the widely-used MSP430 MCU, is also included. 
It has been taken through sign-off P&R for accurate power 
simulation results. A single PE outperforms other MCUs by 

at least 20× in terms of energy, requiring only 2.4 pJ per cycle 
or 16.8 pJ per AU at equal clock speed. 

To correctly compare the MCUs with the eight PEs in the 
folded tree, the parallel aspect of the latter needs to be taken 
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TABLE IV 

COMPARING TOTAL ENERGY F OR THE ALGORITHMIC UNIT (AU) SEQUENCE (LOAD-EXECUTE-STORE-JUMP) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.   Time definitions for loop-runs. 
 

into account. As derived earlier, a folded tree of eight PEs will 
execute 15 AU’s over four stages or 3.75 on average. In other 
words, the folded tree must be compared to the equivalent 
of 3.75 MCUs. The folded tree then outperforms the closest 

competitor MSP430 by at least 15× in terms of energy. 
 

VII.  CASE-STUDIES OF EXAMPLE ALGORITHMS 

Finally, despite the lack of standardized benchmark algo- 
rithms, a selection of four relevant example algorithms  is 
made. Each of these algorithms will be introduced and mea- 
sured for their performance in terms of energy consumption 
and speed. The result is compared to the performance of the 
OpenMSP430. Based on the previous experiments, this is the 
closest competitor. The most efficient MSP430-instructions are 
again used. 

With regards to the implemented ASIC (Fig. 10), a strategy 
must be developed for measuring the correct energy consump- 
tion. Simply executing an algorithm on the folded tree once 
is too fast to measure anything useful. So alternatively, the 
same algorithm can be executed multiple times. To derive a 
correct energy value, the loop overhead time must be taken 
into account. This can be accomplished by also measuring the 
idle consumption and calculating the ratio of active algorithm 
time versus overall time, including loop overhead. 

The activity of a looping run of an algorithm is represented 
in Fig. 11. When an algorithm is looping, it will be active 
for a time trun during which it will consume an amount of 
power Prun . The run time trun can be directly derived from 
the number of instructions in the program code. The time 
between two runs within the loop tloop is also known. This 
time is significant, since for this measurement the folded tree 
is controlled in MATLAB by a UART-over-USB interface of 78 
125 baud or 128 µs between restarts. The ratio of these two, 

α  = trun /tloop, returns the percentage of algorithm activity 
with respect to the total loop time. The inverse ratio is the 
actual loop time overhead percentage. 

The average power consumption of the looped algorithm, 
Pavg, can be measured. Also, the idle consumption of the tree, 
Pidle, can be measured. The sought Prun can then be calculated 

 

Fig. 12.   Peak detection and polynomial evaluation algorithm PE activity. 
 

from the expression 

α · Prun + (1 − α) · Pidle = Pavg. (3) 

The different times can be calculated (Fig. 11) based on the 
algorithm program code and checked against the activity of 
the data bus. Examples of such activity plots will be shown 
in the following sections along with the measurements of the 
example algorithms. 

 
A. Peak Detection 

WSN nodes are often involved in operational modes that 
only activate when a certain trigger level is reached over a set 
of readings during an amount of time, e.g., to control room 

heating. The operator needed for finding the maximum is a ∘ 

b = (a > b ? a : b). 
Fig. 12 presents the PE activity of a single run on the folded 

tree chip for this algorithm. It shows eight traces in which 
each “1” represents the completion of an instruction by the 
corresponding PE. Fig. 12 shows the four stages during the 
trunk-phase of an eight-PE folded tree, corresponding to 8, 4, 
2, and 1 active PEs. 

The complete algorithm takes trun = 4 groups × 3 instr × 7 
cycl/instr (trunk-mode) × 50 ns/cycl (@ 20 MHz) = 4200 ns 
or α = 3.3% which, together  with  the  measured  Pavg  = 

146 µW, leads to Erun = 986 pJ. Including the instruction 
memory, the total energy consumption is Etotal = 1265 pJ, 
compared to 9538 pJ for the MSP430. 

 
B. Evaluate Polynomial 

Various polynomial models exist to fit sensor data in order 
to decide whether this data is useful or not and whether any 
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Fig. 13.   All-prefix sum algorithm PE activity. 

 
action should be undertaken. [19] shows how a (n −1)-th order 
polynomial an + an−1 x 1 + · · · + a1 x n−1 can be evaluated with 
parallel-prefix operations by pairing the coefficients together 
with the desired evaluation value x . 

The same Fig. 12 can be used in this case as well. Although 
the program code and structure differs from the previous algo- 
rithm, they both execute a trunk-phase in four stages of three 
instructions. The complete algorithm takes trun = 4 groups * 
3 instr * 7 cycl/instr (trunk-mode) * 50 ns/cycl (@ 20 MHz) 
= 4200 ns or α = 3.3% which, together with the measured 
Pavg = 150 µW, leads to Erun = 1431 pJ. Including the 
instruction memory, the total energy consumption is Etotal = 
1697 pJ, compared to 11 289 pJ for the MSP430. 

 
 

C. All-Prefix Sum 

Fig. 13 presents the PE activity of the all-prefix sum 
algorithm described earlier in Section III-B. Again, the four 
stages during the trunk-phase of a eight-PE folded tree can 
be seen, corresponding to 8, 4, 2, and 1 active PEs. After the 
transition to twig-phase, the different triggering of the different 
PEs can be deduced. For example, the twig-phase starts at the 
root PE8 with passing the identity element to the left, where 
PE7 is indeed the first one to start after PE8. 

The complete algorithm takes trun = [4 instr × 7 cycl/instr 
(trunk-mode) + (1+9) instr * 6  cycl/instr  (twig-mode)] * 
50 ns/cycl (@ 20 MHz) = 4400 ns or α = 3.4% which, 
together with the measured Pavg = 147 µW, leads to Erun = 
1183 pJ. Including the instruction memory, the total energy 
consumption is Etotal = 1492 pJ, compared to 8319 pJ for the 
MSP430. 

 
 

D. Find Elements in Array 

The flag function needed for finding matching elements 

between two arrays is E (a, b) = (a = b ? 1 : 0). Comparable 
to the selection example under Section III-B, the prefix-sum 
of this array can be used to retrieve the index of the matched 
elements [11]. 

Fig. 14 presents the  PE  activity of a  single run on the 
folded tree chip of this algorithm. In the first two steps, all 

PEs execute two instructions to compare all 2 × 8 elements 

 
 
 

Fig. 14.   Find elements algorithm PE activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.   Total energy consumption of example algorithms (20 MHz, 1.2 V). 
 

against the searched value and pass a “1” if matched, “0” 
otherwise. The resulting array of eight elements is then taken 
through a parallel prefix sum operation. In other words, a 
prefix-sum essentially using a 4-PE folded tree. Here, the 
activity and triggering of the different PEs can be deduced 
and corresponds to what was shown earlier in Figs. 4 and 6. 
The complete algorithm takes trun = [4 instr * 5 cycl/instr 
(trunk-mode) + (1+5) instr * 6  cycl/instr  (twig-mode)] * 
50 ns/cycl (@ 20 MHz) = 3550 ns or α = 2.7% which, 
together with the measured Pavg = 146 µW, leads to Erun = 
908 pJ. Including the instruction memory, the total energy 
consumption is Etotal = 1140 pJ, compared to 7974 pJ for 
the MSP430. 

 

 
E. Results 

 

All case-study results are summarized in Table V and 15. 
The folded tree outperforms the MSP430 by 8–10× in terms 
of energy and at least 2–3× in terms of execution time. Note 
that  this  speed  gain  can  be  traded for  even  more energy- 
efficient execution by lowering the supply voltage until an 
equal throughput is reached. Operating at half the frequency 
(10 MHz) and a minimal supply voltage of 0.79 V, the 
processor consumes about half the energy. A single active PE 
core will now only consume 0.95 µW/MHz, including leakage. 
Overall, the folded tree processor now consumes down to 
80 µW or 8 pJ/cycle and running the example algorithms, 
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TABLE V 

TOTAL ENERGY CONS UMP TION OF EXAMP LE ALGORITHMS (20 MHz, 1.2 V) 
 
 
 
 
 
 
 
 
 
 

it outperforms other MCUs by at least 20× in terms of total 
energy. Finally, the folded tree chip was combined with a radio 
and sensor on a prototype sensor node. Measurements indi- 
cated that using the proposed architecture significantly reduces 
radio communication and, in a typical WSN application, can 
save up to 70% of the total sensor node energy. 

 

 
VIII.  CONCLUSION 

This paper presented the folded tree architecture of a digital 
signal processor for WSN applications. The design exploits 
the fact that many data processing algorithms for WSN 
applications can be described using parallel-prefix operations, 
introducing the much needed flexibility. Energy is saved thanks 
to the following: 1) limiting the data set by pre-processing with 
parallel-prefix operations; 2) the reuse of the binary tree as a 
folded tree; and 3) the combination of data flow and control 
flow elements to introduce a local distributed memory, which 
removes the memory bottleneck while retaining sufficient 
flexibility. 

The simplicity of the programmable PEs that constitute the 
folded tree network resulted in high integration, fast cycle 
time, and lower power consumption. Finally, measurements 
of a 130-nm silicon implementation of the 16-bit folded tree 
with eight PEs were measured to confirm its performance. It 
consumes down to 8 pJ/cycle. Compared to existing commer- 
cial solutions, this is at least 10× less in terms of overall 
energy and 2–3× faster. 
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