
[Ragumadhavan, 3(2): February, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

[883-891]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RES EARCH TECHNOLOGY

DSP Architecture for Wireless Sensor Nodes Using VLSI Technique
R.Ragumadhavan

Assistant Professor, Department of ECE, PSNA College Of Engineering And Technology, India
ragufriends@gmail.com

Abstract— Radio communication exhibits the highest energy
consumption in wireless sensor nodes. Given their limited energy
supply from batteries or scavenging, these nodes must trade data
communication for on-the-node computation. Currently, they are
designed around off-the-shelf low-power microcontrollers. But
by employing a more appropriate processing element, the energy
consumption can be significantly reduced. This paper describes
the design and implementation of the newly proposed folded-tree
architecture for on-the-node data processing in wireless sensor
networks, using parallel prefix operations and data locality in
hardware. Measurements of the silicon implementation show
an improvement of 10–20× in terms of energy as compared to
traditional modern micro-controllers found in sensor nodes.

keywords—Digital processor, parallel prefix, wireless sensor
network (WSN).

I. INTRODUCTION

WIRELESS sensor network (WSN) applications range from
medical monitoring to environmental sensing, industrial
inspection, and military surveillance. WSN nodes essentially
consist of sensors, a radio, and a microcontroller combined
with a limited power supply, e.g., battery or energy
scavenging. Since radio transmissions are very expensive
in terms of energy, they must be kept to a minimum in
order to extend node lifetime. The ratio of communication-to-
computation energy cost can range from 100 to 3000 [1]. So
data communication must be traded for on-the-node processing
which in turn can convert the many sensor readings into
a few useful data values. The data-driven nature of WSN
applications requires a specific data processing approach.
Previously, we have shown how parallel prefix computations
can be a common denominator of many WSN data processing
algorithms [2]. The goal of this paper is to design an ultra-
low-energy WSN digital signal processor by further exploiting
this and other characteristics unique to WSNs.

First, Section II lists these specific characteristics of WSN-
related on-the-node processing. Then, Section III covers the
proposed approach to exploit these properties. Section IV
elaborates on the programming and usage of the resulting
folded tree architecture. Section V discusses the application-
specific integrated circuit (ASIC) implementation of the design
while Section VI measures its performance and Section VII

illustrates the usefulness to WSNs with four relevant
case- studies. Finally, the work is concluded in Section VIII.

II. CHARACTERISTICS OF WSNS AND RELATED

REQUIREMENTS FOR PROCESSING

Several specific characteristics, unique to WSNs, need to
be considered when designing a data processor architecture
for WSNs.

Data-Driven: WSN applications are all about sensing data
in an environment and translating this into useful information
for the end-user. So virtually all WSN applications are char-
acterized by local processing of the sensed data [3].

Many-to-Few: Since radio transmissions are very expensive
in terms of energy, they must be kept to a minimum in order
to extend node lifetime. Data communication must be traded
for on-the-node computation to save energy, so many sensor
readings can be reduced to a few useful data values.

Application-Specific: A “one-size-fits-all” solution does not
exist since a general purpose processor is far too power hungry
for the sensor node’s limited energy budget. ASICs, on the
other hand, are more energy efficient but lack the flexibility
to facilitate many different applications.

Apart from the above characteristics of WSNs, two key
requirements for improving existing processing and control
architectures can be identified.

Minimize Memory Access: Modern micro-controllers
(MCU) are based on the principles of a divide-and-conquer
strategy of ultra-fast processors on the one hand and arbitrary
complex programs on the other hand [4]. But due to this
generic approach, algorithms are deemed to spend up to 40–
60% of the time in accessing memory [5], making it a bottle-
neck [6]. In addition, the lack of task-specific operations leads
to inefficient execution, which results in longer algorithms and
significant memory book keeping.

Combine Data Flow and Control Flow Principles: To man-
age the data stream (to/from data memory) and the instruction
stream (from program memory) in the core functional unit,
two approaches exist. Under control flow, the data stream is
a consequence of the instruction stream, while under data
flow the instruction stream is a consequence of the data
stream. A traditional processor architecture is a control flow
machine, with programs that execute sequentially as a stream
of instructions. In contrast, a data flow program identifies the
data dependencies, which enable the processor to more or less
choose the order of execution. The latter approach has been
hugely successful in specialized high-throughput applications,
such as multimedia and graphics processing. This paper shows
how a combination of both approaches can lead to a significant
improvement over traditional WSN data processing solutions.

[883-891]

Fig. 1. A binary tree (left, 7 PEs) is functionally equivalent to the novel
folded tree topology (right, 4 PEs) used in this architecture.

Fig. 2. Addition with propagate-generate (PG) logic.

III. PROPOSED APPROACH

A. WSN Applications and On-The-Node Data Aggregation

Notwithstanding the seemingly vast nature of WSN applica-
tions, a set of basic building blocks for on-the-node processing
can be identified. Common on-the-node operations performed
on input data collected directly from the node’s sensors or
through in-the-network aggregation include filtering, fitting,
sorting, and searching [7]. We published earlier [2] that these
types of algorithms can be expressed in terms of parallel prefix
operations as a common denominator.

Prefix operations can be calculated in a number of ways [8],
but we chose the binary tree approach [9] because its flow
matches the desired on-the-node data aggregation. This can
be visualized as a binary tree of processing elements (PEs)
across which input data flows from the leaves to the root
(Fig. 1, left). This topology will form the fixed part of our
approach, but in order to serve multiple applications, flexibility
is also required. The tree-based data flow will, therefore, be
executed on a data path of programmable PEs, which provides
this flexibility together with the parallel prefix concept.

B. Parallel Prefix Operations

In the digital design world, prefix operations are best
known for their application in the class of carry look-ahead
adders [10]. The addition of two inputs A and B in this case
consists of three stages (Fig. 2): a bitwise propagate-generate
(PG) logic stage, a group PG logic stage, and a sum-stage.

The outputs of the bitwise PG stage (Pi = Ai ⊕ Bi and
Gi = Ai · Bi) are fed as (Pi , Gi)-pairs to the group PG logic
stage, which implements the following expression:

(Pi , Gi) ∘ (Pi+1 , Gi+1) = (Pi · Pi+1 , Gi + Pi · Gi+1) (1)

It can be shown this ∘-operator has an identify element I =
(1, 0) and is associative.

Fig. 3. Example of a prefix calculation with sum-operator using Blelloch’s
generic approach in a trunk- and twig-phase.

For example, the binary numbers A = “1001” and B =

“0101” are added together. The bitwise PG logic of LSB-first
noted A = {1001} and B = {1010} returns the PG-pairs for
these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0); (1, 0)}.
Using these pairs as input for the group PG-network, defined
by the ∘-operator from (1) to calculate the prefix operation,
results in the carry-array G = {1, 0, 0, 0} [i.e., the second
element of each resulting pair from (1)]. In fact, it contains
all the carries of the addition, hence the name carry look-
ahead. Combined with the corresponding propagate values Pi ,

this yields the sum S = {0111}, which corresponds to “1110.”
The group PG logic is an example of a parallel prefix com-

putation with the given ∘-operator. The output of this parallel-
prefix PG-network is called the all-prefix set defined next.

Given a binary closed and associative operator ∘ with
identity element I and an ordered set of n elements
[a0, a1, a2, . . . , an−1], the reduced-prefix set is the ordered
set [I, a0, (a0 ∘a1), . . . , (a0 ∘a1∘· · ·∘an−2)], while the all-prefix
set is the ordered set [a0, (a0 ∘ a1), . . . , (a0 ∘ a1 ∘ · · · ∘ an−1)],
of which the last element (a0 ∘ a1 ∘ · · · ∘ an−1) is called the
prefix element.

For example, if ∘ is a simple addition, then the prefix
element of the ordered set [3, 1, 2, 0, 4, 1, 1, 3] is L,ai = 15.
Blelloch’s procedure [9] to calculate the prefix-operations on
a binary tree requires two phases (Fig. 3). In the trunk-phase,
the left value L is saved locally as Lsave and it is added to
the right value R, which is passed on toward the root. This
continues until the parallel-prefix element 15 is found at the
root. Note that each time, a store-and-calculate operation is
executed. Then the twig-phase starts, during which data moves
in the opposite direction, from the root to the leaves. Now
the incoming value, beginning with the sum identity element
0 at the root, is passed to the left child, while it is also added
to the previously saved Lsave and passed to the right child.
In the end, the reduced-prefix set is found at the leaves.

An example application of the parallel-prefix operation with
the sum operator (prefix-sum) is filtering an array so that all
elements that do not meet certain criteria are filtered out. This
is accomplished by first deriving a “keep”-array, holding “1”
if an element matches the criteria and “0” if it should be left
out. Calculating the prefix-sum of this array will return the
amount as well as the position of the to-be-kept elements of the
input array. The result array simply takes an element from the
input array if the corresponding keep-array element is “1” and
copies it to the position found in the corresponding element

[883-891]

of the prefix-sum-array. To further illustrate this, suppose the
criterion is to only keep odd elements in the array and throw
away all even elements. This criterion can be formulated as

keep(x) = (x mod 2). The rest is calculated as follows:

input = [2, 3, 8, 7, 6, 2, 1, 5]

keep = [0, 1, 0, 1, 0, 0, 1, 1]

prefix = [0, 1, 1, 2, 2, 2, 3, 4]

result = [3, 7, 1, 5].

The keep-array provides the result of the criterion. Then
the parallel-prefix with sum-operator is calculated, which
results in the prefix-array. Its last element indicates how many
elements are to be kept (i.e., 4). Whenever the keep-array
holds a “1,” the corresponding input-element is copied in
the result-array at the index given by the corresponding
prefix-element (i.e., 3 to position 1, 7 to position 2, etc.). This
is a very generic approach that can be used in combination
with more complex criteria as well.

Other possible applications that relate to WSNs include peak
detection, polynomial evaluation for model-fitting, lexically
compare strings, add multi-precision numbers, delete marked
elements from arrays, and quick sort [3], [11]. Some of these
will be used as a case-study later in Section VII.

C. Folded Tree

However, a straightforward binary tree implementation of
Blelloch’s approach as shown in Fig. 3 costs a significant

amount of area as n inputs require p = n − 1 PEs. To reduce
area and power, pipelining can be traded for throughput [8].
With a classic binary tree, as soon as a layer of PEs finishes
processing, the results are passed on and new calculations can
already recommence independently.

The idea presented here is to fold the tree back onto
itself to maximally reuse the PEs. In doing so, p becomes
proportional to n/2 and the area is cut in half. Note that also
the interconnect is reduced. On the other hand, throughput
decreases by a factor of log2(n) but since the sample rate
of different physical phenomena relevant for WSNs does not
exceed 100 kHz [12], this leaves enough room for this tradeoff
to be made. This newly proposed folded tree topology is
depicted in Fig. 1 on the right, which is functionally equivalent
to the binary tree on the left.

IV. PROGRAMMING AND USING THE FOLDED TREE

Now it will be shown how Blelloch’s generic approach for
an arbitrary parallel prefix operator can be programmed to
run on the folded tree. As an example, the sum-operator is
used to implement a parallel-prefix sum operation on a 4-PE
folded tree.

First, the trunk-phase is considered. At the top of Fig. 4,
a folded tree with four PEs is drawn of which PE3 and PE4
are hatched differently. The functional equivalent binary tree
in the center again shows how data moves from leaves to root
during the trunk-phase. It is annotated with the letters L and
R to indicate the left and right input value of inputs A and B.
In accordance with Blelloch’s approach, L is saved as Lsave

Fig. 4. Implications of using a folded tree (four4-PE folded tree shown at the
top): some PEs must keep multiple Lsave’s (center). Bottom: the trunk-phase
program code of the prefix-sum algorithm on a 4-PE folded tree.

and the sum L+R is passed. Note that these annotations are
not global, meaning that annotations with the same name do
not necessarily share the same actual value.

To see exactly how the folded tree functionally becomes a
binary tree, all nodes of the binary tree (center of Fig. 4) are
assigned numbers that correspond to the PE (1 through 4),
which will act like that node at that stage. As can be seen,
PE1 and PE2 are only used once, PE3 is used twice and PE4
is used three times. This corresponds to a decreasing number
of active PEs while progressing from stage to stage. The first
stage has all four PEs active. The second stage has two active
PEs: PE3 and PE4. The third and last stage has only one
active PE: PE4. More importantly, it can also be seen that PE3
and PE4 have to store multiple Lsave values. PE4 must keep
three: Lsave0 through Lsave2, while PE3 keeps two: Lsave0
and Lsave1. PE1 and PE2 each only keep one: Lsave0. This
has implications toward the code implementation of the trunk-
phase on the folded tree as shown next.

The PE program for the prefix-sum trunk-phase is given at
the bottom of Fig. 4. The description column shows how data
is stored or moves, while the actual operation is given in the
last column. The write/read register files (RF) columns show
how incoming data is saved/retrieved in local RF, e.g., X @0bY
means X is saved at address 0bY , while 0bY @X loads the
value at 0bY into X . Details of the PE data path (Fig. 8)
and the trigger handshaking, which can make PEs wait for
new input data (indicated by T), are given in Section V. The
trunk-phase PE program here has three instructions, which are
identical, apart from the different RF addresses that are used.
Due to the fact that multiple Lsave’s have to be stored, each
stage will have its own RF address to store and retrieve them.

[883-891]

Fig. 5. Annotated twig-phase graph of 4-PE folded tree.

This is why PE4 (active for 3 stages) needs three instructions
(lines 0 - 2), PE3 (active for 2 stages) needs two instructions
(lines 0 - 1) and PE1 and PE2 (active in first stage only) need
one instruction (line 0). This basically means that the folding
of the tree is traded for the unrolling of the program code.

Now, the twig-phase is considered using Fig. 5. The tree
operates in the opposite direction, so an incoming value (anno-
tated as S) enters the PE through its O port [see Fig. 4(top)].
Following Blelloch’s approach, S is passed to the left and
the sum S + Lsave is passed to the right. Note that here as
well none of these annotations are global. The way the PEs
are activated during the twig-phase again influences how the
programming of the folded tree must happen. To explain this,
Fig. 6 shows each stage of the twig-phase (as shown in Fig. 5)
separately to better see how each PE is activated during the
twig-phase and for how many stages. The annotations on the
graph wires (circled numbers) relate to the instruction lines
of the program code shown in Fig. 7, which will also be
discussed.

Fig. 6 (top) shows that PE4 is active during all three stages
of the twig-phase. First, an incoming value (in this case the
identity element S2) is passed to the left. Then it is added to
the previously (from the trunk-phase) stored Lsave2 value and
passed to the right. PE4-instruction 1 will both pass the sum

Lsave2 + S2 = S1 to the right (= itself) and pass this S1 also
the left toward PE3. The same applies for the next instruction
2 . The last instruction 3 passes the sum Lsave0+S0.

Looking at the PE3 activity [Fig. 6 (center)], it is only active
in the second and third stage of the twig-phase. It is indeed
only triggered after the first stage when PE4 passes S2 to
the left. The first PE3-instruction 0 passes S2 to PE1, and
instruction 1 adds this to the saved Lsave1, passing this sum
T1 to PE2. The same procedure is repeated for the incoming
S1 from PE4 to PE3, which is passed to its left (instruction 2),
while the sum Lsave0+S1 is passed to its right (instruction 3).
In fact, two pairs of instructions can be identified, that exhibit
the same behavior in terms of its outputs: the instruction-pair
0 and 1 and the instruction-pair 2 and 3 . Two things are
different however. First, the used register addresses (e.g., to

Fig. 6. Activity of different PEs during the stages of the twig-phase for a
4-PE folded tree: PE4 (top), PE3 (center), PE1 and PE2 (bottom).

store Lsave values) are different. Second, the first pair stores
incoming values S0 and S1 from PE4, while the second pair
does not store anything. These differences due to the folding,
again lead to unrolled program code for PE3.

Last, PE1 and PE2 activity are shown at the bottom of
Fig. 6. They each execute two instructions. First, the incoming
value is passed to the left, followed by passing the sum of this
value with Lsave0 to the right. The program code for both is
shown in the bottom two tables of Fig. 7.

V. HARDWARE IMPLEMENTATION

Fig. 8(a) gives a schematic overview of the implemented
folded tree design. The ASIC comprises of eight identical
16-bit PEs (Fig. 10), each consisting of a data path with

[883-891]

(a)

(b)

Fig. 8. Schematic diagram of design overview. (a) Top-level view (here with
four PEs shown). (b) Detail of one PE data path
.

Fig. 9. View of the lab measurement setup for the folded tree IC.

Fig. 7. Program of the twig-phase of the prefix sum algorithm for a 4-PE
folded tree.

programmable controller and 16 × 36 bit instruction memory.
They are interconnected through the request-acknowledge
handshaking trigger bus and the bidirectional data bus in the
folded way (cf. Fig. 1). Handshaking triggers activate the
PEs only when new data is available and in such a way that
they functionally become a binary tree in both directions of
the trunk- and twig-phase. Within each data path [Fig. 8(b)],
muxes select external data, stored data or the previous result
as the next input for the data path. The data path contains an
algorithmic logical unit (ALU) with four-word deep register
files (RF-A and RF-B) at the inputs A and B for operand
isolation. These RFs comprise the distributed data memory
of the whole system, with a combined capacity of 4 kB.
They are the only clocked elements within the data path. As
data flows through the tree, it is constantly kept local to its
designated operation. This is one of the goals of this paper,
which effectively removes the von Neumann bottleneck and

saves power. The design targets 20–80-MHz operation at
1.2 V. It was fabricated in 130-nm standard cell CMOS.

A PE takes six (down-phase) or seven (up-phase) cycles to
process one 36-bit instruction, which can be divided into three
stages.

1) Preparation, which acknowledges the data and starts the
core when input triggers are received (1 cycle).

2) Execution, which performs the load-execute-jump stages
to do the calculations and fetch the next instruction
pointer (4 cycles).

3) Transfer, which forwards the result by triggering the next
PE in the folded tree path on a request-acknowledge
basis (1–2 cycle).

This is tailored toward executing the key store-and-calculate
operation of the parallel prefix algorithm on a tree as described
earlier in Section III-B. Combined with the flexibility to
program the PEs using any combination of operators available
in their data path, the folded tree has the freedom to run a
variety of parallel-prefix applications [11].

VI. EXPERIMENTAL VALIDATION

The measurement setup (Fig. 9) of the chip uses digital
interfacing over universal serial bus (USB) to access the data
I/O, programming, and debug facilities. The data bus [see

[883-891]

TABLE II

FOLDED TREE CIRCUIT WITH EIGHT PES EXECUTING A TRUNK-PHAS E

UNDER NOMINAL CONDITIONS (20 MHz, 1.2 V)

Fig. 10. Die photograph of the implemented processor with eight PEs.

TABLE I

LEAKAGE POWER AND DYNAMIC ENERGY F OR ONE PE

UNDER NOMINAL CONDITIONS (20 MHz, 1.2 V)

TABLE III

ENERGY PER INS TRUCTION OF RELATED WORK, NORMALIZED

TO 130 nm, 1.2 V, AND 16 BIT [13]–[16]

Fig. 8(a)] activity can be monitored and plotted, as will be
shown in Section VII.

A. PE Measurements

The PE table in Table I gives the dynamic energy and
leakage power for one PE core running at 20 MHz and 1.2 V
supply under full stress with varying data inputs. It consumes
42 µW or 2.1 µW/MHz, including 0.03 µW leakage. The
register-based instruction memory power values are presented
in last column of the PE table and consume 6 µW. When
going into Idle mode, a PE will consume 60% less than in
Active mode.

To validate the measurements and to check whether the
derived values for a single PE are correct, they are combined in
an estimate for the folded tree design with eight PEs. When
such a folded tree executes a trunk-phase, it will take four
stages to reach the root. Thanks to the handshaking, at each
stage, the number of active PEs is cut in half as 8, 4, 2, 1.
The number of idle PEs increases accordingly as 0, 4, 6, 7.
This makes a total of 15 active PEs and 17 idle PEs. By
combining this information with the PE’s consumption, the
folded tree consumption can be estimated. As can be seen in
the table of Table II, this closely matches the measured values
for the folded tree. The last column also takes the instruction
memories into account. Overall, the folded tree processor
consumes 255 µW or 13 pJ/cycle, including memories.

B. Energy-Per-Instruction

A standard benchmark suite of applications for WSN sys-
tems does not exist though some initial attempts have been
made [17], [7]. Without running the same applications on
each platform, it is not possible to fairly compare energy
efficiency, performance, and flexibility. This is especially true
for academic results, which all revert to different benchmarks
due to the lack of a standard suite. As a consequence, readers

are often left with only the energy-per-instruction metric to
compare different systems. Table III presents a summary
of related academic work. The listed energy-per-instruction
values are normalized to the presented work using following

formula:

Enorm = Eorig × 130 nm/L × (1.2 V / Vdd)2 × 16 bit/ W (2)

given energy per instruction Eorig, process L, supply Vdd , and
data path bitwidth W of the other system. This work requires
at least 4.3× less in terms of energy per instruction. The notion
of an instruction, however, might significantly differ especially
as WSN systems often employ specific instruction sets and
specialized hardware to reach extreme energy efficiency. This
is the case for this work as well since the benefit of the parallel
prefix-sums framework cannot be fully quantified using the
small-scale energy-per-instruction metric.

C. Algorithmic Unit

A better metric for comparison is the energy per algorithmic
unit (AU). The AU is a sequence of frequently used steps
in the target applications. To calculate this metric, a com-
plete data sheet with full instruction set and detailed power
measurements is needed. In contrast to academic work, this
information is readily available for many commercial MCUs.

Given the context of WSN applications, the AU is defined
as a load-execute-store-jump sequence, which is a key in
data processing algorithms that loop over data arrays. For
each MCU, the total number of cycles for the AU sequence
is calculated. Each time, the most efficient instructions are
chosen from each MCU’s specific instruction set. The energy
per cycle is based on the information found in the data sheet
and normalized using (2). Table IV presents the details of this
comparison. The OpenMSP 430 [18], which is an open-source
model of the widely-used MSP430 MCU, is also included.
It has been taken through sign-off P&R for accurate power
simulation results. A single PE outperforms other MCUs by

at least 20× in terms of energy, requiring only 2.4 pJ per cycle
or 16.8 pJ per AU at equal clock speed.

To correctly compare the MCUs with the eight PEs in the
folded tree, the parallel aspect of the latter needs to be taken

[883-891]

TABLE IV

COMPARING TOTAL ENERGY F OR THE ALGORITHMIC UNIT (AU) SEQUENCE (LOAD-EXECUTE-STORE-JUMP)

Fig. 11. Time definitions for loop-runs.

into account. As derived earlier, a folded tree of eight PEs will
execute 15 AU’s over four stages or 3.75 on average. In other
words, the folded tree must be compared to the equivalent
of 3.75 MCUs. The folded tree then outperforms the closest

competitor MSP430 by at least 15× in terms of energy.

VII. CASE-STUDIES OF EXAMPLE ALGORITHMS

Finally, despite the lack of standardized benchmark algo-
rithms, a selection of four relevant example algorithms is
made. Each of these algorithms will be introduced and mea-
sured for their performance in terms of energy consumption
and speed. The result is compared to the performance of the
OpenMSP430. Based on the previous experiments, this is the
closest competitor. The most efficient MSP430-instructions are
again used.

With regards to the implemented ASIC (Fig. 10), a strategy
must be developed for measuring the correct energy consump-
tion. Simply executing an algorithm on the folded tree once
is too fast to measure anything useful. So alternatively, the
same algorithm can be executed multiple times. To derive a
correct energy value, the loop overhead time must be taken
into account. This can be accomplished by also measuring the
idle consumption and calculating the ratio of active algorithm
time versus overall time, including loop overhead.

The activity of a looping run of an algorithm is represented
in Fig. 11. When an algorithm is looping, it will be active
for a time trun during which it will consume an amount of
power Prun . The run time trun can be directly derived from
the number of instructions in the program code. The time
between two runs within the loop tloop is also known. This
time is significant, since for this measurement the folded tree
is controlled in MATLAB by a UART-over-USB interface of 78
125 baud or 128 µs between restarts. The ratio of these two,

α = trun /tloop, returns the percentage of algorithm activity
with respect to the total loop time. The inverse ratio is the
actual loop time overhead percentage.

The average power consumption of the looped algorithm,
Pavg, can be measured. Also, the idle consumption of the tree,
Pidle, can be measured. The sought Prun can then be calculated

Fig. 12. Peak detection and polynomial evaluation algorithm PE activity.

from the expression

α · Prun + (1 − α) · Pidle = Pavg. (3)

The different times can be calculated (Fig. 11) based on the
algorithm program code and checked against the activity of
the data bus. Examples of such activity plots will be shown
in the following sections along with the measurements of the
example algorithms.

A. Peak Detection

WSN nodes are often involved in operational modes that
only activate when a certain trigger level is reached over a set
of readings during an amount of time, e.g., to control room

heating. The operator needed for finding the maximum is a ∘

b = (a > b ? a : b).
Fig. 12 presents the PE activity of a single run on the folded

tree chip for this algorithm. It shows eight traces in which
each “1” represents the completion of an instruction by the
corresponding PE. Fig. 12 shows the four stages during the
trunk-phase of an eight-PE folded tree, corresponding to 8, 4,
2, and 1 active PEs.

The complete algorithm takes trun = 4 groups × 3 instr × 7
cycl/instr (trunk-mode) × 50 ns/cycl (@ 20 MHz) = 4200 ns
or α = 3.3% which, together with the measured Pavg =

146 µW, leads to Erun = 986 pJ. Including the instruction
memory, the total energy consumption is Etotal = 1265 pJ,
compared to 9538 pJ for the MSP430.

B. Evaluate Polynomial

Various polynomial models exist to fit sensor data in order
to decide whether this data is useful or not and whether any

[883-891]

Fig. 13. All-prefix sum algorithm PE activity.

action should be undertaken. [19] shows how a (n −1)-th order
polynomial an + an−1 x 1 + · · · + a1 x n−1 can be evaluated with
parallel-prefix operations by pairing the coefficients together
with the desired evaluation value x .

The same Fig. 12 can be used in this case as well. Although
the program code and structure differs from the previous algo-
rithm, they both execute a trunk-phase in four stages of three
instructions. The complete algorithm takes trun = 4 groups *
3 instr * 7 cycl/instr (trunk-mode) * 50 ns/cycl (@ 20 MHz)
= 4200 ns or α = 3.3% which, together with the measured
Pavg = 150 µW, leads to Erun = 1431 pJ. Including the
instruction memory, the total energy consumption is Etotal =
1697 pJ, compared to 11 289 pJ for the MSP430.

C. All-Prefix Sum

Fig. 13 presents the PE activity of the all-prefix sum
algorithm described earlier in Section III-B. Again, the four
stages during the trunk-phase of a eight-PE folded tree can
be seen, corresponding to 8, 4, 2, and 1 active PEs. After the
transition to twig-phase, the different triggering of the different
PEs can be deduced. For example, the twig-phase starts at the
root PE8 with passing the identity element to the left, where
PE7 is indeed the first one to start after PE8.

The complete algorithm takes trun = [4 instr × 7 cycl/instr
(trunk-mode) + (1+9) instr * 6 cycl/instr (twig-mode)] *
50 ns/cycl (@ 20 MHz) = 4400 ns or α = 3.4% which,
together with the measured Pavg = 147 µW, leads to Erun =
1183 pJ. Including the instruction memory, the total energy
consumption is Etotal = 1492 pJ, compared to 8319 pJ for the
MSP430.

D. Find Elements in Array

The flag function needed for finding matching elements

between two arrays is E (a, b) = (a = b ? 1 : 0). Comparable
to the selection example under Section III-B, the prefix-sum
of this array can be used to retrieve the index of the matched
elements [11].

Fig. 14 presents the PE activity of a single run on the
folded tree chip of this algorithm. In the first two steps, all

PEs execute two instructions to compare all 2 × 8 elements

Fig. 14. Find elements algorithm PE activity.

Fig. 15. Total energy consumption of example algorithms (20 MHz, 1.2 V).

against the searched value and pass a “1” if matched, “0”
otherwise. The resulting array of eight elements is then taken
through a parallel prefix sum operation. In other words, a
prefix-sum essentially using a 4-PE folded tree. Here, the
activity and triggering of the different PEs can be deduced
and corresponds to what was shown earlier in Figs. 4 and 6.
The complete algorithm takes trun = [4 instr * 5 cycl/instr
(trunk-mode) + (1+5) instr * 6 cycl/instr (twig-mode)] *
50 ns/cycl (@ 20 MHz) = 3550 ns or α = 2.7% which,
together with the measured Pavg = 146 µW, leads to Erun =
908 pJ. Including the instruction memory, the total energy
consumption is Etotal = 1140 pJ, compared to 7974 pJ for
the MSP430.

E. Results

All case-study results are summarized in Table V and 15.
The folded tree outperforms the MSP430 by 8–10× in terms
of energy and at least 2–3× in terms of execution time. Note
that this speed gain can be traded for even more energy-
efficient execution by lowering the supply voltage until an
equal throughput is reached. Operating at half the frequency
(10 MHz) and a minimal supply voltage of 0.79 V, the
processor consumes about half the energy. A single active PE
core will now only consume 0.95 µW/MHz, including leakage.
Overall, the folded tree processor now consumes down to
80 µW or 8 pJ/cycle and running the example algorithms,

[883-891]

TABLE V

TOTAL ENERGY CONS UMP TION OF EXAMP LE ALGORITHMS (20 MHz, 1.2 V)

it outperforms other MCUs by at least 20× in terms of total
energy. Finally, the folded tree chip was combined with a radio
and sensor on a prototype sensor node. Measurements indi-
cated that using the proposed architecture significantly reduces
radio communication and, in a typical WSN application, can
save up to 70% of the total sensor node energy.

VIII. CONCLUSION

This paper presented the folded tree architecture of a digital
signal processor for WSN applications. The design exploits
the fact that many data processing algorithms for WSN
applications can be described using parallel-prefix operations,
introducing the much needed flexibility. Energy is saved thanks
to the following: 1) limiting the data set by pre-processing with
parallel-prefix operations; 2) the reuse of the binary tree as a
folded tree; and 3) the combination of data flow and control
flow elements to introduce a local distributed memory, which
removes the memory bottleneck while retaining sufficient
flexibility.

The simplicity of the programmable PEs that constitute the
folded tree network resulted in high integration, fast cycle
time, and lower power consumption. Finally, measurements
of a 130-nm silicon implementation of the 16-bit folded tree
with eight PEs were measured to confirm its performance. It
consumes down to 8 pJ/cycle. Compared to existing commer-
cial solutions, this is at least 10× less in terms of overall
energy and 2–3× faster.

REFERENCES

[1] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-

aware wireless microsensor networks,” IEEE Signal Process. Mag.,
vol. 19, no. 2, pp. 40–50, Mar. 2002.

[2] C. Walravens and W. Dehaene, “Design of a low-energy data processing
architecture for wsn nodes,” in Proc. Design, Automat. Test Eur. Conf.
Exhibit., Mar. 2012, pp. 570–573.

[3] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks, 1st ed. New York: Wiley, 2005.

[4] J. Hennessy and D. Patterson, Computer Architecture A Quantitative
Approach, 4th ed. San Mateo, CA: Morgan Kaufmann, 2007.

[5] S. Mysore, B. Agrawal, F. T. Chong, and T. Sherwood, “Exploring the
processor and ISA design for wireless sensor network applications,”
in Proc. 21th Int. Conf. Very-Large-Scale Integr. (VLSI) Design, 2008,
pp. 59–64.

[6] J. Backus, “Can programming be liberated from the von neumann style?”
in Proc. ACM Turing Award Lect., 1977, pp. 1–29.

[7] L. Nazhandali, M. Minuth, and T. Austin, “SenseBench: Toward an accu-
rate evaluation of sensor network processors,” in Proc. IEEE Workload
Characterizat. Symp., Oct. 2005, pp. 197–203.

[8] P. Sanders and J. Träff, “Parallel prefix (scan) algorithms for MPI,” in
Proc. Recent Adv. Parallel Virtual Mach. Message Pass. Interf., 2006,
pp. 49–57.

[9] G. Blelloch, “Scans as primitive parallel operations,” IEEE Trans.
Comput., vol. 38, no. 11, pp. 1526–1538, Nov. 1989.

[10] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Reading, MA, USA, Addison Wesley, 2010.

[11] G. E. Blelloch, “Prefix sums and their applications,” Carnegie
Mellon Univ., Pittsburgh, PA: USA, Tech. Rep. CMU-CS-90,
Nov. 1990.

[12] M. Hempstead, J. M. Lyons, D. Brooks, and G.-Y. Wei, “Survey of
hardware systems for wireless sensor networks,” J. Low Power Electron.,
vol. 4, no. 1, pp. 11–29, 2008.

[13] V. N. Ekanayake, C. Kelly, and R. Manohar “SNAP/LE: An ultra-low-
power processor for sensor networks,” ACM SIGOPS Operat. Syst. Rev.
- ASPLOS, vol. 38, no. 5, pp. 27–38, Dec. 2004.

[14] V. N. Ekanayake, C. Kelly, and R. Manohar, “BitSNAP: Dynamic
significance compression for a lowenergy sensor network asynchronous
processor,” in Proc. IEEE 11th Int. Symp. Asynchronous Circuits Syst.,
Mar. 2005, pp. 144–154.

[15] M. Hempstead, D. Brooks, and G. Wei, “An accelerator-based wireless
sensor network processor in 130 nm cmos,” J. Emerg. Select. Topics
Circuits Syst., vol. 1, no. 2, pp. 193–202, 2011.

[16] B. A. Warneke and K. S. J. Pister, “An ultra-low energy micro-
controller for smart dust wireless sensor networks,” in Proc.
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers. Feb. 2004,
pp. 316–317.

[17] M. Hempstead, M. Welsh, and D. Brooks, “Tinybench: The case for a
standardized benchmark suite for TinyOS based wireless sensor network
devices ,” in Proc. IEEE 29th Local Comput. Netw. Conf., Nov. 2004,
pp. 585–586.

[18] O. Girard. (2010). “OpenMSP430 processor core, available at open-
cores.org,” [Online]. Available: http://opencores.org/project,openmsp430

[19] H. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. 100, no. 2, pp. 153–161, Feb. 1971.

